The second-order training methods can converge much faster than first-order optimizers in DNN training. This is because the second-order training utilizes the inversion of the second-order information (SOI) matrix to find a more accurate descent direction and step size. However, the huge SOI matrices bring significant computational and memory overheads in the traditional architectures like GPU and CPU. On the other side, the ReRAM-based process-in-memory (PIM) technology is suitable for the second-order training because of the following three reasons: First, PIM's computation happens in memory, which reduces data movement overheads; Second, ReRAM crossbars can compute SOI's inversion in $O\left(1\right)$ time; Third, if architected properly, ReRAM crossbars can perform matrix inversion and vector-matrix multiplications which are important to the second-order training algorithms. Nevertheless, current ReRAM-based PIM techniques still face a key challenge for accelerating the second-order training. The existing ReRAM-based matrix inversion circuitry can only support 8-bit accuracy matrix inversion and the computational precision is not sufficient for the second-order training that needs at least 16-bit accurate matrix inversion. In this work, we propose a method to achieve high-precision matrix inversion based on a proven 8-bit matrix inversion (INV) circuitry and vector-matrix multiplication (VMM) circuitry. We design \archname{}, a ReRAM-based PIM accelerator architecture for the second-order training. Moreover, we propose a software mapping scheme for \archname{} to further optimize the performance by fusing VMM and INV crossbar. Experiment shows that \archname{} can achieve an average of 115.8$\times$/11.4$\times$ speedup and 41.9$\times$/12.8$\times$energy saving compared to a GPU counterpart and PipeLayer on large-scale DNNs.


翻译:第二阶培训方法比DNN培训的第一阶优化方法要快得多。 这是因为第二阶培训利用了二阶信息(SOI)矩阵的反转以找到更准确的下降方向和步骤大小。 然而, 巨大的SOI矩阵在GPU和CPU等传统架构中带来大量的计算和记忆管理管理。 另一方面, 以 RRA 为基础的进程- 模拟(PIM) 技术适合第二阶培训, 原因如下: 第一, PIM 计算发生在存储中, 减少数据移动的基数; 第二, RAM 设计交叉栏可以将SOI 的反译为$left(1\right) 时间; 第三, 如果设计得当, RAM 交叉列可以对第二阶培训算法进行矩阵和矢量的倍增。 然而, 目前基于 RAM PIM 和 PIM 技术在加速第二阶培训方面仍面临一个关键的挑战。 目前基于 RAM $9 的第二阶调基矩阵矩阵矩阵矩阵矩阵的当前 RIM 只能支持一个基于 IM IM IM 系统 的 IM 和 IM IM 系统 运行中 的 的 系统化方法 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
专知会员服务
159+阅读 · 2020年1月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年12月13日
Arxiv
0+阅读 · 2022年12月13日
Arxiv
13+阅读 · 2021年6月14日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员