In this article we present a numerical analysis for a third-order differential equation with non-periodic boundary conditions and time-dependent coefficients, namely, the linear Korteweg-de Vries Burgers equation. This numerical analysis is motived due to the dispersive and dissipative phenomena that government this kind of equations. This work builds on previous methods for dispersive equations with constant coefficients, expanding the field to include a new class of equations which until now have eluded the time-evolving parameters. More precisely, throughout the Legendre-Petrov-Galerkin method we prove stability and convergence results of the approximation in appropriate weighted Sobolev spaces. These results allow to show the role and trade off of these temporal parameters into the model. Afterwards, we numerically investigate the dispersion-dissipation relation for several profiles, further provide insights into the implementation method, which allow to exhibit the accuracy and efficiency of our numerical algorithms.
翻译:在本篇文章中,我们为与非周期边界条件和时间依赖系数的第三阶差异方程式,即线性Korteweg-de Vries Burgers等方程式,提供了数字分析。这种数字分析的动机是分散和分散现象,这种现象是管理这种方程式的分流和分散现象。这项工作以先前使用固定系数的分散方程式的方法为基础,扩大了字段的范围,以包括新的方程式类别,而这种方程式迄今一直未能达到时间变化参数。更确切地说,在整个Tulturre-Petrov-Galerkin方法中,我们证明在适当加权的Sobolev空间近似具有稳定性和趋同结果。这些结果可以显示这些时间参数的作用,并转换到模型中。随后,我们从数字上调查若干剖面的分散-分散关系,进一步深入了解执行方法,从而能够展示我们数字算法的准确性和效率。