In this paper, we explore whether a robot can learn to hang arbitrary objects onto a diverse set of supporting items such as racks or hooks. Endowing robots with such an ability has applications in many domains such as domestic services, logistics, or manufacturing. Yet, it is a challenging manipulation task due to the large diversity of geometry and topology of everyday objects. In this paper, we propose a system that takes partial point clouds of an object and a supporting item as input and learns to decide where and how to hang the object stably. Our system learns to estimate the contact point correspondences between the object and supporting item to get an estimated stable pose. We then run a deep reinforcement learning algorithm to refine the predicted stable pose. Then, the robot needs to find a collision-free path to move the object from its initial pose to stable hanging pose. To this end, we train a neural network based collision estimator that takes as input partial point clouds of the object and supporting item. We generate a new and challenging, large-scale, synthetic dataset annotated with stable poses of objects hung on various supporting items and their contact point correspondences. In this dataset, we show that our system is able to achieve a 68.3% success rate of predicting stable object poses and has a 52.1% F1 score in terms of finding feasible paths. Supplemental material and videos are available on our project webpage.


翻译:在本文中, 我们探索一个机器人是否可以学习将任意物体挂在诸如 架子或钩子等各种辅助物品上。 拥有这种能力的机器人可以在许多领域应用, 如国内服务、 物流或制造。 然而, 这是一项具有挑战性的操作任务, 原因是日常物体的几何和地形学差异很大。 在本文中, 我们提议了一个系统, 将一个物体的局部云和一个辅助项目作为输入部分云, 并学习如何将物体刺死。 我们的系统学会估计该物体与辅助项目之间的联络点通信, 以获得一个估计的稳定姿势。 然后我们运行一个深度的强化学习算法, 以完善预测的稳定姿势。 然后, 机器人需要找到一条没有碰撞的路径, 以便把物体从最初的姿势移到稳定的悬浮姿势。 为此, 我们训练一个以碰撞估计器为基础的神经网络, 以作为该物体的部分点云作为输入部分云, 支持项目。 我们制作了一个新的和具有挑战性的大规模合成数据集, 用各种支持项目的固定姿势和这些物体的接触点对等进行估计。 我们的连接点对应的路径上有一个稳定的路径, 能够找到一个稳定的路径, 稳定的路径 稳定的路径 。 稳定的路径是一条稳定的路径, 稳定的路径, 稳定的路径, 稳定的路径, 稳定的飞行的路径将显示一个稳定的飞行的路径, 能够的路径 的路径将显示一个稳定的飞行的路径 成功的路径是稳定的路径 。

0
下载
关闭预览

相关内容

【Nature-MI】可解释人工智能的药物发现
专知会员服务
45+阅读 · 2020年11月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
MIT新书《强化学习与最优控制》
专知会员服务
279+阅读 · 2019年10月9日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
(Python)3D人脸处理工具Face3d
AI研习社
7+阅读 · 2019年2月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Joint Monocular 3D Vehicle Detection and Tracking
Arxiv
8+阅读 · 2018年12月2日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
(Python)3D人脸处理工具Face3d
AI研习社
7+阅读 · 2019年2月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Top
微信扫码咨询专知VIP会员