Intermittent connectivity of clients to the parameter server (PS) is a major bottleneck in federated edge learning frameworks. The lack of constant connectivity induces a large generalization gap, especially when the local data distribution amongst clients exhibits heterogeneity. To overcome intermittent communication outages between clients and the central PS, we introduce the concept of collaborative relaying wherein the participating clients relay their neighbors' local updates to the PS in order to boost the participation of clients with poor connectivity to the PS. We propose a semi-decentralized federated learning framework in which at every communication round, each client initially computes a local consensus of a subset of its neighboring clients' updates, and eventually transmits to the PS a weighted average of its own update and those of its neighbors'. We appropriately optimize these local consensus weights to ensure that the global update at the PS is unbiased with minimal variance - consequently improving the convergence rate. Numerical evaluations on the CIFAR-10 dataset demonstrate that our collaborative relaying approach outperforms federated averaging-based benchmarks for learning over intermittently-connected networks such as when the clients communicate over millimeter wave channels with intermittent blockages.


翻译:用户与参数服务器(PS)断断续续的连接是联结边缘学习框架中的一个主要瓶颈。 缺乏持续连接导致巨大的普遍化差距, 特别是当客户之间的本地数据分布显示出异质性时。 为了克服客户与中央PS之间间断的通信中断, 我们引入了协作性中继概念, 让参与的客户向PS转发其邻居的本地最新消息, 从而推动连接到PS的客户的参与。 我们提议了一个半分散化的联结学习框架, 在每个通信回合中, 每个客户首先计算其相邻客户最新消息的局部共识, 并最终向 PS 传递其自身和邻居最新消息的加权平均值。 我们适当优化了这些本地共识权重, 以确保PS的全球更新不偏袒, 且差异最小 — 从而改善趋同率。 CIFAR- 10 数据集的量化评估表明, 我们的合作性中继方法超越了以平均为基础的基准, 以学习超间歇性连接的网络, 例如当客户与间歇式的气压频道通信时。

0
下载
关闭预览

相关内容

Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年12月2日
Arxiv
0+阅读 · 2022年12月1日
Arxiv
10+阅读 · 2021年3月30日
VIP会员
相关VIP内容
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员