Intermittent connectivity of clients to the parameter server (PS) is a major bottleneck in federated edge learning frameworks. The lack of constant connectivity induces a large generalization gap, especially when the local data distribution amongst clients exhibits heterogeneity. To overcome intermittent communication outages between clients and the central PS, we introduce the concept of collaborative relaying wherein the participating clients relay their neighbors' local updates to the PS in order to boost the participation of clients with poor connectivity to the PS. We propose a semi-decentralized federated learning framework in which at every communication round, each client initially computes a local consensus of a subset of its neighboring clients' updates, and eventually transmits to the PS a weighted average of its own update and those of its neighbors'. We appropriately optimize these local consensus weights to ensure that the global update at the PS is unbiased with minimal variance - consequently improving the convergence rate. Numerical evaluations on the CIFAR-10 dataset demonstrate that our collaborative relaying approach outperforms federated averaging-based benchmarks for learning over intermittently-connected networks such as when the clients communicate over millimeter wave channels with intermittent blockages.
翻译:用户与参数服务器(PS)断断续续的连接是联结边缘学习框架中的一个主要瓶颈。 缺乏持续连接导致巨大的普遍化差距, 特别是当客户之间的本地数据分布显示出异质性时。 为了克服客户与中央PS之间间断的通信中断, 我们引入了协作性中继概念, 让参与的客户向PS转发其邻居的本地最新消息, 从而推动连接到PS的客户的参与。 我们提议了一个半分散化的联结学习框架, 在每个通信回合中, 每个客户首先计算其相邻客户最新消息的局部共识, 并最终向 PS 传递其自身和邻居最新消息的加权平均值。 我们适当优化了这些本地共识权重, 以确保PS的全球更新不偏袒, 且差异最小 — 从而改善趋同率。 CIFAR- 10 数据集的量化评估表明, 我们的合作性中继方法超越了以平均为基础的基准, 以学习超间歇性连接的网络, 例如当客户与间歇式的气压频道通信时。