Max-autogressive moving average (Max-ARMA) processes are powerful tools for modelling time series data with heavy-tailed behaviour; these are a non-linear version of the popular autoregressive moving average models. River flow data typically have features of heavy tails and non-linearity, as large precipitation events cause sudden spikes in the data that then exponentially decay. Therefore, stationary Max-ARMA models are a suitable candidate for capturing the unique temporal dependence structure exhibited by river flows. This paper contributes to advancing our understanding of the extremal properties of stationary Max-ARMA processes. We detail the first approach for deriving the extremal index, the lagged asymptotic dependence coefficient, and an efficient simulation for a general Max-ARMA process. We use the extremal properties, coupled with the belief that Max-ARMA processes provide only an approximation to extreme river flow, to fit such a model which can broadly capture river flow behaviour over a high threshold. We make our inference under a reparametrisation which gives a simpler parameter space that excludes cases where any parameter is non-identifiable. We illustrate results for river flow data from the UK River Thames.
翻译:暂无翻译