Log-linear models are widely used to express the association in multivariate frequency data on contingency tables. The paper focuses on the power analysis for testing the goodness-of-fit hypothesis for this model type. Conventionally, for the power-related sample size calculations a deviation from the null hypothesis (effect size) is specified by means of the chi-square goodness-of-fit index. It is argued that the odds ratio is a more natural measure of effect size, with the advantage of having a data-relevant interpretation. Therefore, a class of log-affine models that are specified by odds ratios whose values deviate from those of the null by a small amount can be chosen as an alternative. Being expressed as sets of constraints on odds ratios, both hypotheses are represented by smooth surfaces in the probability simplex, and thus, the power analysis can be given a geometric interpretation as well. A concept of geometric power is introduced and a Monte-Carlo algorithm for its estimation is proposed. The framework is applied to the power analysis of goodness-of-fit in the context of multinomial sampling. An iterative scaling procedure for generating distributions from a log-affine model is described and its convergence is proved. To illustrate, the geometric power analysis is carried out for data from a clinical study.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年6月12日
Arxiv
0+阅读 · 2024年6月6日
VIP会员
相关VIP内容
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员