We extend our recently proposed Deep Learning-aided many-body dispersion (DNN-MBD) model to quadrupole polarizability (Q) terms using a generalized Random Phase Approximation (RPA) formalism, thus enabling the inclusion of van der Waals contributions beyond dipole. The resulting DNN-MBDQ model only relies on ab initio-derived quantities as the introduced quadrupole polarizabilities are recursively retrieved from dipole ones, in turn modelled via the Tkatchenko-Scheffler method. A transferable and efficient deep-neuronal network (DNN) provides atom in molecule volumes, while a single range-separation parameter is used to couple the model to Density Functional Theory (DFT). Since it can be computed at a negligible cost, the DNN-MBDQ approach can be coupled with DFT functionals such as PBE,PBE0 and B86bPBE (dispersionless). The DNN-MBQ-corrected functionals reach chemical accuracy while exhibiting lower errors compared to the DNN-MBD dipole-only counterparts as well as to other MBD-based dispersion correction models where the accuracy gain can reache up to 45%.


翻译:我们将最近提出的深学习辅助多体分散模式(DNN-MBDD)扩展为四极极分化(Q),使用通用随机阶段匹配(RPA)形式主义(Q),从而能够将范德华(van der Waals)捐款纳入dipole之外。由此产生的DNN-MBDQ模式只能依靠初始数量,因为引入的四极分性从底盘中反复检索,转而以Tkatchenko-Scheffler方法为模型。DNN(DNN)提供分子量的原子,同时使用单一范围分隔参数将模型与密度功能理论(DFT)相配。由于DNNN-MDQ模式可以以微不足道的成本计算,DNNN-MDQ方法可以与DFT功能(PBE、PBE0和B86bBBE(无差异)相连接。DNNN-MBQ的校正功能在显示化学精确度的同时,与DNNMM-MBD的精确度相比,可以达到45的差等等。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员