We consider the problem of detecting abrupt changes in the distribution of a multi-dimensional time series, with limited computing power and memory. In this paper, we propose a new, simple method for model-free online change-point detection that relies only on fast and light recursive statistics, inspired by the classical Exponential Weighted Moving Average algorithm (EWMA). The proposed idea is to compute two EWMA statistics on the stream of data with different forgetting factors, and to compare them. By doing so, we show that we implicitly compare recent samples with older ones, without the need to explicitly store them. Additionally, we leverage Random Features (RFs) to efficiently use the Maximum Mean Discrepancy as a distance between distributions, furthermore exploiting recent optical hardware to compute high-dimensional RFs in near constant time. We show that our method is significantly faster than usual non-parametric methods for a given accuracy.
翻译:我们考虑了发现多维时间序列分布突变的问题,该数字序列的计算能力和内存有限。在本文中,我们提出了一个新的简单方法,用于不使用模型的在线变化点探测,该方法仅依赖于快速和光递现统计数据,受古典光学光学加权平均算法(EWMA)的启发。拟议的想法是用不同的遗忘因素计算两个关于数据流的EWMA统计数据,并进行比较。通过这样做,我们表明我们隐含地将最近的样本与较老的样本进行比较,而不需要明确储存这些样本。此外,我们利用随机特征(RFs)有效地使用最大平均值偏差作为分布之间的距离,进一步利用最近的光学硬件在近乎恒定的时间里计算高维值的RF。我们表明,我们的方法比通常的非参数方法要快得多,以达到一定的准确性。