The centrality in a network is a popular metric for agents' network positions and is often used in regression models to model the network effect on an outcome variable of interest. In empirical studies, researchers often adopt a two-stage procedure to first estimate the centrality and then infer the network effect using the estimated centrality. Despite its prevalent adoption, this two-stage procedure lacks theoretical backing and can fail in both estimation and inference. We, therefore, propose a unified framework, under which we prove the shortcomings of the two-stage in centrality estimation and the undesirable consequences in the regression. We then propose a novel supervised network centrality estimation (SuperCENT) methodology that simultaneously yields superior estimations of the centrality and the network effect and provides valid and narrower confidence intervals than those from the two-stage. We showcase the superiority of SuperCENT in predicting the currency risk premium based on the global trade network.


翻译:在经验研究中,研究人员往往采取两阶段程序,首先对中心作用作出估计,然后用估计中心作用来推断网络效应。尽管这一两阶段程序普遍采用,但缺乏理论支持,在估计和推论两方面都可能失败。因此,我们提出了一个统一框架,根据这个框架,我们证明核心估计两个阶段的缺点和倒退的不良后果。然后我们提出一个新的、受监督的网络中心作用估计方法,同时得出对中心作用和网络效应的优估,并提供与两阶段相比的有效和狭窄的信任间隔。我们展示超能力公司在预测基于全球贸易网络的货币风险溢价方面的优势。

0
下载
关闭预览

相关内容

【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
108+阅读 · 2020年11月12日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年1月28日
Arxiv
4+阅读 · 2021年10月19日
Arxiv
10+阅读 · 2021年2月18日
Arxiv
11+阅读 · 2021年2月17日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员