Recently Homomorphic Encryption (HE) is used to implement Privacy-Preserving Neural Networks (PPNNs) that perform inferences directly on encrypted data without decryption. Prior PPNNs adopt mobile network architectures such as SqueezeNet for smaller computing overhead, but we find na\"ively using mobile network architectures for a PPNN does not necessarily achieve shorter inference latency. Despite having less parameters, a mobile network architecture typically introduces more layers and increases the HE multiplicative depth of a PPNN, thereby prolonging its inference latency. In this paper, we propose a \textbf{HE}-friendly privacy-preserving \textbf{M}obile neural n\textbf{ET}work architecture, \textbf{HEMET}. Experimental results show that, compared to state-of-the-art (SOTA) PPNNs, HEMET reduces the inference latency by $59.3\%\sim 61.2\%$, and improves the inference accuracy by $0.4 \% \sim 0.5\%$.
翻译:最近,基因加密(HE)用于实施直接对加密数据进行推断而没有解密的隐私保护神经网络(PPNN)。先前,PPNN采用SqueezeNet等移动网络结构,用于较小的计算间接费用,但我们发现,使用PPNN的移动网络结构不一定能达到较短的推导时间。尽管参数较少,移动网络结构通常会引入更多的层,并增加PPNN的倍增深度,从而延长其推论时间。在本文中,我们建议采用“Textbf{HE}方便的隐私保护(textbf{M}obile nextbf{ET}工作结构,\ textbf{HEMET}。实验结果显示,与最先进的(SOTA) PPNNS相比,HMET降低了推导力的延缓度59.3 ⁇ sim 61.2 $,并将推导力精确度提高0.4 ⁇ =0.5美元。