Channel state information (CSI) needs to be estimated for reliable and efficient communication, however, location information is hidden inside and can be further exploited. This article presents a detailed description of a Massive Multi-Input Multi-Output (MaMIMO) testbed and provides a set of experimental location-labelled CSI data. In this article, we focus on the design of the hardware and software of a MaMIMO testbed for gathering multiple CSI data sets. We also show this data can be used for learning-based localization and enhanced communication research. The data set presented in this work is made fully available to the research community. We show a CSI-based joint communication and sensing processing pipeline can be evaluated and designed based on the collected data set. Specifically, the localization output obtained by a convolutional neural network (CNN) trained on the data sets is used to schedule users for improving the spectral efficiency (SE) of the communication system. Finally, we pose promising directions on further exploiting this data set and creating future data sets.
翻译:然而,为了可靠和高效的通信,需要估计频道状态信息(CSI),但定位信息在内部隐藏,可以进一步加以利用。本文章详细描述了大规模多投入多产出多产出测试台,提供了一组实验性地点标签的CSI数据。在本篇文章中,我们侧重于设计用于收集多个 CSI数据集的MAMIIM测试台的硬件和软件。我们还表明,这些数据可用于学习本地化和加强通信研究。这项工作中介绍的数据集已充分提供给研究界。我们显示,基于CSI的联合通信和感测处理管道可以根据所收集的数据集进行评估和设计。具体地说,通过经过有关数据集培训的革命神经网络获得的本地化输出,用于安排用户改进通信系统的光谱效率。最后,我们为进一步利用这一数据集和创建未来数据集提出了有希望的方向。