In addition to generating data and annotations, devising sensible data splitting strategies and evaluation metrics is essential for the creation of a benchmark dataset. This practice ensures consensus on the usage of the data, homogeneous assessment, and uniform comparison of research methods on the dataset. This study focuses on CholecT50, which is a 50 video surgical dataset that formalizes surgical activities as triplets of <instrument, verb, target>. In this paper, we introduce the standard splits for the CholecT50 and CholecT45 datasets and show how they compare with existing use of the dataset. CholecT45 is the first public release of 45 videos of CholecT50 dataset. We also develop a metrics library, ivtmetrics, for model evaluation on surgical triplets. Furthermore, we conduct a benchmark study by reproducing baseline methods in the most predominantly used deep learning frameworks (PyTorch and TensorFlow) to evaluate them using the proposed data splits and metrics and release them publicly to support future research. The proposed data splits and evaluation metrics will enable global tracking of research progress on the dataset and facilitate optimal model selection for further deployment.
翻译:除了生成数据和说明外,制定合理的数据分割战略和评价指标对于建立基准数据集至关重要,这种做法确保了数据使用、同质评估和对数据集研究方法的统一比较方面的共识。本研究侧重于CholecT50,这是一个50个视频外科数据集,将外科活动正规化为三重 < 仪表,动词,目标>三重。在本文件中,我们引入了CholecT50和CholecT45数据集的标准分解,并展示了它们与数据集现有使用情况的比较。CholecT45是首次公开发布CholecT50数据集的45个视频。我们还开发了用于外科三重体模型评估的计量库和象数。此外,我们开展一项基准研究,在最主要使用的深层学习框架(PyTorrch和TensorFlow)中重新制作基线方法,以便利用拟议的数据分解和指标来评价它们,并公开公布这些数据集,以支持今后的研究。拟议的数据分解和评价指标将有助于全球最佳数据选择。</s>