We introduce a novel method for identifying the mass composition of ultra-high-energy cosmic rays using deep learning. The key idea of the method is to use a chain of two neural networks. The first network predicts the type of a primary particle for individual events, while the second infers the mass composition of an ensemble of events. We apply this method to the Monte-Carlo data for the Telescope Array Surface Detectors readings, on which it yields an unprecedented low error of 7% for 4-component approximation. The statistical error is shown to be inferior to the systematic one related to the choice of the hadronic interaction model used for simulations.
翻译:我们采用了一种新颖的方法,通过深层学习来确定超高能宇宙射线的质量构成。 这种方法的关键概念是使用两个神经网络链。 第一个网络预测个别事件的主要粒子类型, 而第二个网络则推断事件组合的质量构成。 我们对望远镜阵列地表探测器读数的蒙特-卡洛数据应用了这种方法, 由此得出一个前所未有的低误差, 4个组成部分近似值为7%。 统计误差比与选择用于模拟的日光互动模型有关的系统误差要低。