Deep neural networks are vulnerable to adversarial attacks. Recent studies of adversarial robustness focus on the loss landscape in the parameter space since it is related to optimization performance. These studies conclude that it is hard to optimize the loss function for adversarial training with respect to parameters because the loss function is not smooth: i.e., its gradient is not Lipschitz continuous. However, this analysis ignores the dependence of adversarial attacks on parameters. Since adversarial attacks are the worst noise for the models, they should depend on the parameters of the models. In this study, we analyze the smoothness of the loss function of adversarial training for binary linear classification and for general cases considering the dependence. We reveal that the Lipschitz continuity depends on the types of constraints of adversarial attacks in the binary linear classification. Specifically, under the L2 constraints, the adversarial loss is smooth except at zero. We extend the analysis to general cases and prove local smoothness in several cases. Our analysis reveals that the constraint of adversarial examples is a cause of the non-smoothness of adversarial loss. Moreover, we reveal the relation between the flatness of the loss function with respect to input data and the smoothness of the adversarial loss with respect to parameters. Our analysis implies that if we flatten the loss function with respect to input data, the smoothness of adversarial loss tends to decrease.


翻译:深心神经网络很容易受到对抗性攻击。 最近关于对抗性强力的研究侧重于参数空间的损耗情况,因为它与优化性能有关。这些研究的结论是,很难优化参数方面的对抗性训练损失功能,因为损失功能不平稳:即其梯度不是Lipschitz 持续。然而,这一分析忽略了对抗性攻击对参数的依赖性。由于对抗性攻击是模型中最坏的噪音,它们应该取决于模型的参数。在本研究中,我们分析了二元线性分类的对抗性训练损失功能的顺利性,以及考虑到依赖性的一般案例。我们发现,利普西茨的连续性取决于二元线性分类中的对抗性攻击的制约。具体地说,在L2的限制下,对抗性攻击损失是平稳的。我们把分析扩大到一般案例,并证明在几个案例中当地是平稳的。我们的分析表明,对抗性攻击性例子的制约是造成对抗性损失的非摩擦性的原因。此外,我们揭示,如果对投入性损失的平稳性作用与我们平稳的损失性损失作用之间的平滑度关系,则意味着我们的损失性损失与对投入性分析与平稳的损失性反应的下降性作用与我们的损失性反应与平稳性反应与平稳性反应性反应性反应性反应与我们的损失性反应性反应性反应性反应性反应性反应性反应性反应性反应性反应性反应性反应性反应性反应性反应性功能与我们的损失性反应性反应性反应性作用与我们对数据与平稳性反应性反应性反应性反应性反应性反应性反应性反应性反应性反应性作用之间的关系的关系。

0
下载
关闭预览

相关内容

损失函数,在AI中亦称呼距离函数,度量函数。此处的距离代表的是抽象性的,代表真实数据与预测数据之间的误差。损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。
专知会员服务
44+阅读 · 2020年10月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
度量学习中的pair-based loss
极市平台
65+阅读 · 2019年7月17日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月3日
A General and Adaptive Robust Loss Function
Arxiv
8+阅读 · 2018年11月5日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关资讯
度量学习中的pair-based loss
极市平台
65+阅读 · 2019年7月17日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员