To enable the pre-trained models to be fine-tuned with local data on edge devices without sharing data with the cloud, we design an efficient split fine-tuning (SFT) framework for edge and cloud collaborative learning. We propose three novel techniques in this framework. First, we propose a matrix decomposition-based method to compress the intermediate output of a neural network to reduce the communication volume between the edge device and the cloud server. Second, we eliminate particular links in the model without affecting the convergence performance in fine-tuning. Third, we implement our system atop PyTorch to allow users to easily extend their existing training scripts to enjoy the efficient edge and cloud collaborative learning. Experiments results on 9 NLP datasets show that our framework can reduce the communication traffic by 96 times with little impact on the model accuracy.
翻译:为了在不与云云共享数据的情况下,使预先培训的模型与边缘设备当地数据进行微调,不与云层共享数据,我们设计了一个高效的边缘和云层协作学习的精细调(SFT)框架。我们在这个框架中提出了三种新颖技术。首先,我们提议了一个基于矩阵分解法的方法来压缩神经网络的中间输出,以减少边缘设备与云层服务器之间的通信量。第二,我们消除了模型中的特定链接,同时不影响微调的趋同性能。第三,我们在PyTorch实施了我们的系统,使用户能够方便地扩展现有的培训脚本,以享受高效的边缘和云层协作学习。关于9个NLP数据集的实验结果表明,我们的框架可以将通信流量减少96倍,而对模型的准确性影响不大。