This article concerns the predictive modeling for spatio-temporal data as well as model interpretation using data information in space and time. Intrinsically, we develop a novel approach based on dimension reduction for such data in order to capture nonlinear mean structures without requiring a prespecified parametric model. In addition to prediction as a common interest, this approach focuses more on the exploration of geometric information in the data. The method of Pairwise Directions Estimation (PDE) is incorporated in our approach to implement the data-driven function searching of spatial structures and temporal patterns, useful in exploring data trends. The benefit of using geometrical information from the method of PDE is highlighted. We further enhance PDE, referring to it as PDE+, by using resolution adaptive fixed rank kriging to estimate the random effects not explained in the mean structures. Our proposal can not only produce more accurate and explainable prediction, but also increase the computation efficiency for model building. Several simulation examples are conducted and comparisons are made with four existing methods. The results demonstrate that the proposed PDE+ method is very useful for exploring and interpreting the patterns of trend for spatio-temporal data. Illustrative applications to two real datasets are also presented.


翻译:本条涉及时空数据预测模型以及利用时空数据信息进行空间和时间数据资料的模型解释。从整体上讲,我们根据这些数据的尺寸缩减制定了一种新颖的方法,目的是在不要求事先指定的参数模型的情况下,捕捉非线性平均结构,从而获得非线性平均结构,而不需要事先指定的参数模型。除了作为共同利益的预测外,这一方法还更侧重于数据中几何信息的探索。Pairwith-Drain Departments Estimation(PDE)的方法被纳入了我们执行数据驱动的空间结构和时间模式搜索功能的方法,这对探索数据趋势很有用。从PDE方法使用几何信息的好处得到了突出。我们进一步加强了PDE,称之为PDE+,通过使用分辨率调整固定级Krig来估计未在平均结构中解释的随机效应。我们的建议不仅能够产生更准确和解释的预测,而且提高模型建筑的计算效率。一些模拟实例,并且用四种现有方法进行比较。结果表明,拟议的PDE+方法对于探索和解释数据模型的两种趋势模式也非常有用。

0
下载
关闭预览

相关内容

【干货书】面向计算科学和工程的Python导论,167页pdf
专知会员服务
41+阅读 · 2021年4月7日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
202+阅读 · 2020年2月24日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年5月14日
Arxiv
22+阅读 · 2018年2月14日
Arxiv
4+阅读 · 2017年11月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员