Here, we investigate whether (and how) experimental design could aid in the estimation of the precision matrix in a Gaussian chain graph model, especially the interplay between the design, the effect of the experiment and prior knowledge about the effect. We approximate the marginal posterior precision of the precision matrix via Laplace approximation under different priors: a flat prior, the conjugate prior Normal-Wishart, the unconfounded prior Normal-Matrix Generalized Inverse Gaussian (MGIG) and a general independent prior. We show that the approximated posterior precision is not a function of the design matrix for the cases of the Normal-Wishart and flat prior, but it is for the cases of the Normal-MGIG and the general independent prior. However, for the Normal-MGIG and the general independent prior, we find a sharp upper bound on the approximated posterior precision that does not involve the design matrix which translates into a bound on the information that could be extracted from a given experiment. We confirm the theoretical findings via a simulation study comparing the KL divergence between the prior and the posterior (i.e. information gain by the experiment) and the Stein's loss difference between random versus no experiment (design matrix equal to zero). Our findings provide practical advice for domain scientists conducting experiments to infer the interactions between a multidimensional response.
翻译:在此,我们调查实验设计是否(以及如何)有助于估计高斯链式图模型的精确矩阵,特别是设计、实验效果和以前对效果的了解之间的相互作用。我们根据不同的前科,通过Lapace近似(不同前科)比较了精确矩阵的边边缘精度:一个平坦的前端,先是正常-Wishart的共和前端,前是普通-一般反面的正常-马特列(MGIG),前是一般独立前端。我们通过模拟研究证实,近似后方精确度不是正常-西施特和平坦之前对正常-西施特案例的设计矩阵的函数函数函数函数,而是普通-MGIGIG和一般前独立前端。然而,对于正常-GIG和普通前独立前的近端精确矩阵,我们发现一个尖锐的上方界限是近似后方精确度,它并不包含从特定实验中提取的信息。我们通过模拟研究,将前方和后方和后方阵阵阵阵阵阵阵阵阵队之间的差异(i. 提供实验结果到实验中的随机空空空空空的实验) 之间的实验结果。