We present a new technique to efficiently sample and communicate a large number of elements from a distributed sampling space. When used in the context of a recent LOCAL algorithm for $(\operatorname{degree}+1)$-list-coloring (D1LC), this allows us to solve D1LC in $O(\log^5 \log n)$ CONGEST rounds, and in only $O(\log^* n)$ rounds when the graph has minimum degree $\Omega(\log^7 n)$, w.h.p. The technique also has immediate applications in testing some graph properties locally, and for estimating the sparsity/density of local subgraphs in $O(1)$ CONGEST rounds, w.h.p.
翻译:我们提出了一种从分布式采样空间有效取样和传播大量元素的新技术。当用于最近的LOCAL算法($( operatorname{ 度% 1) $- list- 彩色( D1LC) ) 时,这使我们能够用$( log_ 5\ log n) 来解析D1LC 圆筒,而当图形具有最低度 $\ Omega( log_ 7 n) $ ( w.h. p.) 时,仅用$( log_ n) 来解解解 D1LC 圆筒。 该技术在本地测试某些图形属性以及用$( COONEST) 圆盘估计地方子谱的广度/密度方面也直接应用了该技术, w.h.p.。