Univariate normal regression models are statistical tools widely applied in many areas of economics. Nevertheless, income data have asymmetric behavior and are best modeled by non-normal distributions. The modeling of income plays an important role in determining workers' earnings, as well as being an important research topic in labor economics. Thus, the objective of this work is to propose parametric quantile regression models based on two important asymmetric income distributions, namely, Dagum and Singh-Maddala distributions. The proposed quantile models are based on reparameterizations of the original distributions by inserting a quantile parameter. We present the reparameterizations, some properties of the distributions, and the quantile regression models with their inferential aspects. We proceed with Monte Carlo simulation studies, considering the maximum likelihood estimation performance evaluation and an analysis of the empirical distribution of two residuals. The Monte Carlo results show that both models meet the expected outcomes. We apply the proposed quantile regression models to a household income data set provided by the National Institute of Statistics of Chile. We showed that both proposed models had a good performance both in terms of model fitting. Thus, we conclude that results were favorable to the use of Singh-Maddala and Dagum quantile regression models for positive asymmetric data, such as income data.
翻译:单变正常回归模型是在许多经济学领域广泛应用的统计工具。然而,收入数据具有不对称行为,以非正常分布为最佳模型。收入模型在确定工人收入方面起着重要作用,同时也是劳动力经济学的一个重要研究课题。因此,这项工作的目的是根据两个重要的不对称收入分布,即Dagum和Singh-Maddala分布,提出分量回归模型。提议的量化模型基于通过插入一个四分位参数对原始分布进行重新校准。我们用其推论的方面来展示了重新计量、分配的一些特性和四分回归模型。我们进行蒙特卡洛模拟研究,考虑最大可能估计业绩评估以及对两个剩余部分的经验分布分析。蒙特卡洛结果显示,这两个模型都符合预期结果。我们将拟议的四分位回归模型应用于智利国家统计研究所提供的一套家庭收入数据。我们显示,拟议的两个模型在模型中,分配的一些特性,以及量化回归模型的特性及其推论方面,都具有推论性方面。我们进行了蒙特卡洛模拟研究,考虑对两个剩余部分进行最有可能的估测估估估估量性分布。蒙特卡洛结果都符合预期结果。我们的结论是,将Sing-qreadalalim数据用于Singalimalimal的模型。我们得出了Sing数据。