There has been a surge in Explainable-AI (XAI) methods that provide insights into the workings of Deep Neural Network (DNN) models. Integrated Gradients (IG) is a popular XAI algorithm that attributes relevance scores to input features commensurate with their contribution to the model's output. However, it requires multiple forward \& backward passes through the model. Thus, compared to a single forward-pass inference, there is a significant computational overhead to generate the explanation which hinders real-time XAI. This work addresses the aforementioned issue by accelerating IG with a hardware-aware algorithm optimization. We propose a novel non-uniform interpolation scheme to compute the IG attribution scores which replaces the baseline uniform interpolation. Our algorithm significantly reduces the total interpolation steps required without adversely impacting convergence. Experiments on the ImageNet dataset using a pre-trained InceptionV3 model demonstrate \textit{2.6-3.6}$\times$ performance speedup on GPU systems for iso-convergence. This includes the minimal \textit{0.2-3.2}\% latency overhead introduced by the pre-processing stage of computing the non-uniform interpolation step-sizes.


翻译:解析- AI (XAI) 方法激增, 深入了解深神经网络(DNN) 模型的运作模式。 集成梯度( IG) 是一种流行的 XAI 算法, 将相关评分与输入特性相适应, 与其对模型输出的贡献相称。 但是, 它需要通过模型的多个前方 ⁇ ⁇ 向后传。 因此, 与单一的前方通路推论相比, 有大量的计算间接费用来产生阻碍实时 XAI 的解释。 这项工作通过硬件觉悟算法优化来加速 IG 的运行, 解决上述问题。 我们提出了一个新的非统一化的内推法, 以计算IG 属性评分, 取代基线统一内推法。 我们的算法大大降低了所需的全部内推步骤, 而不会对趋同产生不利影响。 使用事先经过培训的 InceptionV3 模型对图像网络数据集进行实验, 显示了用于同化的 GPUPU 系统绩效加速度 。 我们提议了一个最小的非文本 {0.2- 3. 2 平调前的系统。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
专知会员服务
61+阅读 · 2020年3月19日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
30+阅读 · 2021年7月7日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
Top
微信扫码咨询专知VIP会员