In this article, we consider a spin-spin interaction network governed by $XX + YY$ Hamiltonian. The vertices and edges of the network represent the spin objects and their interactions, respectively. We take a privilege to switch on or off any interaction, that assists us to perform multiple perfect state transfers in a graph simultaneously. We also build up a salable network allowing quantum communication between two arbitrary vertices. Later we utilize the combinatorial characteristics of hypercube graphs to propose a static routing schema to communicate simultaneously between a set of senders and a set of receivers in a planar network. Our construction is new and significantly powerful. We elaborate multiple examples of planar graphs supporting quantum routing where classical routing is not possible.
翻译:在此篇文章中, 我们考虑一个由 $XX + YY$ 汉密尔顿 管理 的 螺旋- 螺旋式互动网络。 网络的顶点和边缘分别代表旋转对象及其相互作用。 我们拥有打开或关闭任何互动的特权, 这有助于我们同时在图形中执行多个完美的状态传输。 我们还建立了一个可分配网络, 允许两个任意的顶点之间进行量子通信。 后来我们利用超立方图的组合特性, 提议一个静态的路线, 以在平板网络中同时在一套发件人和一套接收器之间进行通信 。 我们的构造是新的, 并且非常强大 。 我们开发了多个支持量子路由的平面图示例, 在无法进行传统路由的地方支持量子路由 。