Long-range (LoRa) technology is most widely used for enabling low-power wide area networks (WANs) on unlicensed frequency bands. Despite its modest data rates, it provides extensive coverage for low-power devices, making it an ideal communication system for many internet of things (IoT) applications. In general, LoRa is considered as the physical layer, whereas LoRaWAN is the medium access control (MAC) layer of the LoRa stack that adopts a star topology to enable communication between multiple end devices (EDs) and the network gateway. The chirp spread spectrum modulation deals with LoRa signal interference and ensures long-range communication. At the same time, the adaptive data rate mechanism allows EDs to dynamically alter some LoRa features, such as the spreading factor (SF), code rate, and carrier frequency to address the time variance of communication conditions in dense networks. Despite the high LoRa connectivity demand, LoRa signals interference and concurrent transmission collisions are major limitations. Therefore, to enhance LoRaWAN capacity, the LoRa Alliance released many LoRaWAN versions, and the research community has provided numerous solutions to develop scalable LoRaWAN technology. Hence, we thoroughly examine LoRaWAN scalability challenges and state-of-the-art solutions in both the physical and MAC layers. These solutions primarily rely on SF, logical, and frequency channel assignment, whereas others propose new network topologies or implement signal processing schemes to cancel the interference and allow LoRaWAN to connect more EDs efficiently. A summary of the existing solutions in the literature is provided at the end of the paper, describing the advantages and disadvantages of each solution and suggesting possible enhancements as future research directions.


翻译:暂无翻译

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2022年8月16日
Arxiv
22+阅读 · 2022年3月31日
Arxiv
37+阅读 · 2021年2月10日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员