In this paper, we introduce RoboMIND (Multi-embodiment Intelligence Normative Data for Robot Manipulation), a dataset containing 107k demonstration trajectories across 479 diverse tasks involving 96 object classes. RoboMIND is collected through human teleoperation and encompasses comprehensive robotic-related information, including multi-view observations, proprioceptive robot state information, and linguistic task descriptions. To ensure data consistency and reliability for imitation learning, RoboMIND is built on a unified data collection platform and a standardized protocol, covering four distinct robotic embodiments: the Franka Emika Panda, the UR5e, the AgileX dual-arm robot, and a humanoid robot with dual dexterous hands. Our dataset also includes 5k real-world failure demonstrations, each accompanied by detailed causes, enabling failure reflection and correction during policy learning. Additionally, we created a digital twin environment in the Isaac Sim simulator, replicating the real-world tasks and assets, which facilitates the low-cost collection of additional training data and enables efficient evaluation. To demonstrate the quality and diversity of our dataset, we conducted extensive experiments using various imitation learning methods for single-task settings and state-of-the-art Vision-Language-Action (VLA) models for multi-task scenarios. By leveraging RoboMIND, the VLA models achieved high manipulation success rates and demonstrated strong generalization capabilities. To the best of our knowledge, RoboMIND is the largest multi-embodiment teleoperation dataset collected on a unified platform, providing large-scale and high-quality robotic training data. Our project is at https://x-humanoid-robomind.github.io/.
翻译:暂无翻译