With recent advances in machine learning, researchers are now able to solve traditional problems with new solutions. In the area of digital watermarking, deep-learning-based watermarking technique is being extensively studied. Most existing approaches adopt a similar encoder-driven scheme which we name END (Encoder-NoiseLayer-Decoder) architecture. In this paper, we revamp the architecture and creatively design a decoder-driven watermarking network dubbed De-END which greatly outperforms the existing END-based methods. The motivation for designing De-END originated from the potential drawback we discovered in END architecture: The encoder may embed redundant features that are not necessary for decoding, limiting the performance of the whole network. We conducted a detailed analysis and found that such limitations are caused by unsatisfactory coupling between the encoder and decoder in END. De-END addresses such drawbacks by adopting a Decoder-Encoder-Noiselayer-Decoder architecture. In De-END, the host image is firstly processed by the decoder to generate a latent feature map instead of being directly fed into the encoder. This latent feature map is concatenated to the original watermark message and then processed by the encoder. This change in design is crucial as it makes the feature of encoder and decoder directly shared thus the encoder and decoder are better coupled. We conducted extensive experiments and the results show that this framework outperforms the existing state-of-the-art (SOTA) END-based deep learning watermarking both in visual quality and robustness. On the premise of the same decoder structure, the visual quality (measured by PSNR) of De-END improves by 1.6dB (45.16dB to 46.84dB), and extraction accuracy after JPEG compression (QF=50) distortion outperforms more than 4% (94.9% to 99.1%).


翻译:随着机器学习的最新进展,研究人员现在能够用新的解决方案解决传统问题。在数字水印领域,正在广泛研究基于深学习的水印技术。大多数现有方法都采用了类似的编码器驱动方案,我们命名为 END( Encoder-Noise Layer-Decoder) 架构。在本文中,我们改造了结构,创造性地设计了一个代号为Decoder驱动的水印网络,大大超越了现有的基于 END 的变异方法。设计De-end的动机源于我们在 END 架构中发现的潜在缺陷:编码器可能嵌入一个多余的功能,而这种功能对于解码来说并不必要,限制了整个网络的性能。我们进行了详细分析,发现这种局限性是由于在END(E)和解码驱动器的解码驱动器之间发生不令人满意的合并。De-ender-ender-Nationer-Decoder 架构大大超越了已有的变异性。在Deender-Deender 结构中,主机图像首先由Deco 解算器进行处理,然后由这个直译器将这个直态的直译结果转换成,然后通过直置的解到直置的 Rde-dededededededededededeal 和直译的 Rdemodeal 将这个原始的图制成成为该元的图,而成为了这个直成。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员