Performant Convolutional Neural Network (CNN) architectures must be tailored to specific tasks in order to consider the length, resolution, and dimensionality of the input data. In this work, we tackle the need for problem-specific CNN architectures. We present the Continuous Convolutional Neural Network (CCNN): a single CNN able to process data of arbitrary resolution, dimensionality and length without any structural changes. Its key component are its continuous convolutional kernels which model long-range dependencies at every layer, and thus remove the need of current CNN architectures for task-dependent downsampling and depths. We showcase the generality of our method by using the same architecture for tasks on sequential ($1{\rm D}$), visual ($2{\rm D}$) and point-cloud ($3{\rm D}$) data. Our CCNN matches and often outperforms the current state-of-the-art across all tasks considered.
翻译:实际进化神经网络(CNN)架构必须适应具体任务,以便考虑输入数据的长度、分辨率和维度。 在这项工作中,我们处理对有问题的CNN架构的需求。我们展示了连续进化神经网络(CCNN):一个单一的CNN,能够处理任意解析、维度和长度数据而没有任何结构变化的CNN。它的关键组成部分是其连续进化核心,它建模了每个层次的远距离依赖性,从而消除了当前CNN架构对基于任务的下调和深度的需要。我们通过在所考虑的所有任务中使用相同的结构来展示我们方法的通用性,即对连续任务使用相同的结构($($),视觉($)和点球($($))($($))数据。我们的CNN匹配并经常超越当前所有任务中的最新状态。