Local maxima of random processes are useful for finding important regions and are routinely used, for summarising features of interest (e.g. in neuroimaging). In this work we provide confidence regions for the location of local maxima of the mean and standardized effect size (i.e. Cohen's d) given multiple realisations of a random process. We prove central limit theorems for the location of the maximum of mean and t-statistic random fields and use these to provide asymptotic confidence regions for the location of peaks of the mean and Cohen's d. Under the assumption of stationarity we develop Monte Carlo confidence regions for the location of peaks of the mean that have better finite sample coverage than regions derived based on classical asymptotic normality. We illustrate our methods on 1D MEG data and 2D fMRI data from the UK Biobank.
翻译:在这项工作中,我们为平均和标准化效果大小(即科恩的d)的当地最大值的位置提供了信任区,因为随机过程已多次实现。我们证明中值和t-统计随机场域最大值的位置有核心限制,并用它们为中值和科恩的峰值位置提供无药可依的信任区。在假定的可视性的前提下,我们为平均值和科恩的峰值的位置发展了蒙特卡洛的最小值最高值的可靠区,该值的样本覆盖率比基于古典无药性正常性得出的区域要好。我们用英国生物银行的1D MEG 数据和 2D FMRI 数据来说明我们的方法。