Given an $n$-vertex undirected graph $G=(V,E,w)$, and a parameter $k\geq1$, a path-reporting distance oracle (or PRDO) is a data structure of size $S(n,k)$, that given a query $(u,v)\in V^2$, returns an $f(k)$-approximate shortest $u-v$ path $P$ in $G$ within time $q(k)+O(|P|)$. Here $S(n,k)$, $f(k)$ and $q(k)$ are arbitrary functions. A landmark PRDO due to Thorup and Zwick, with an improvement of Wulff-Nilsen, has $S(n,k)=O(k\cdot n^{1+\frac{1}{k}})$, $f(k)=2k-1$ and $q(k)=O(\log k)$. The size of this oracle is $\Omega(n\log n)$ for all $k$. Elkin and Pettie and Neiman and Shabat devised much sparser PRDOs, but their stretch was polynomially larger than the optimal $2k-1$. On the other hand, for non-path-reporting distance oracles, Chechik devised a result with $S(n,k)=O(n^{1+\frac{1}{k}})$, $f(k)=2k-1$ and $q(k)=O(1)$. In this paper we make a dramatic progress in bridging the gap between path-reporting and non-path-reporting distance oracles. We devise a PRDO with size $S(n,k)=O(\lceil\frac{k\log\log n}{\log n}\rceil\cdot n^{1+\frac{1}{k}})$, stretch $f(k)=O(k)$ and query time $q(k)=O(\log\lceil\frac{k\log\log n}{\log n}\rceil)$. We can also have size $O(n^{1+\frac{1}{k}})$, stretch $O(k\cdot\lceil\frac{k\log\log n}{\log n}\rceil)$ and query time $q(k)=O(\log\lceil\frac{k\log\log n}{\log n}\rceil)$. Our results on PRDOs are based on novel constructions of approximate distance preservers, that we devise in this paper. Specifically, we show that for any $\epsilon>0$, any $k=1,2,...$, and any graph $G$ and a collection $\mathcal{P}$ of $p$ vertex pairs, there exists a $(1+\epsilon)$-approximate preserver with $O(\gamma(\epsilon,k)\cdot p+n\log k+n^{1+\frac{1}{k}})$ edges, where $\gamma(\epsilon,k)=(\frac{\log k}{\epsilon})^{O(\log k)}$. These new preservers are significantly sparser than the previous state-of-the-art approximate preservers due to Kogan and Parter.
翻译:给定一个 $n$ 个结点的无向图 $G=(V,E,w)$ 和一个参数 $k\geq1$,路径报告距离预言机(PRDO)是一个数据结构,大小为 $S(n,k)$,给定一个查询 $(u,v)\in V^2$,在时间 $q(k)+O(|P|)$ 内返回 $G$ 中 $u-v$ 的 $f(k)$-近似最短路径 $P$。这里 $S(n,k)$、$f(k)$ 和 $q(k)$ 是任意函数。Thorup和Zwick提出了一种重要的 PRDO,Wulff-Nilsen进行了改进,其 $S(n,k)=O(k\cdot n^{1+\frac{1}{k}})$,$f(k)=2k-1$,$q(k)=O(\log k)$。对于所有 $k$,该预言机的大小为 $\Omega(n\log n)$。Elkin和Pettie以及Neiman和Shabat设计了更稀疏的 PRDO,但其伸缩性比最佳的 $2k-1$ 高出多项式。另一方面,Chechik提出了一种非路径报告距离预言机,其 $S(n,k)=O(n^{1+\frac{1}{k}})$,$f(k)=2k-1$,$q(k)=O(1)$。在本文中,我们在路径报告和非路径报告距离预言机之间极大地缩小了差距。我们提出了一种 PRDO,其大小为 $S(n,k)=O(\lceil\frac{k\log\log n}{\log n}\rceil\cdot n^{1+\frac{1}{k}})$,伸缩性为 $f(k)=O(k)$,查询时间为 $q(k)=O(\log\lceil\frac{k\log\log n}{\log n}\rceil)$。我们还可以使用大小为 $O(n^{1+\frac{1}{k}})$,伸缩性为 $O(k\cdot\lceil\frac{k\log\log n}{\log n}\rceil)$ 及查询时间为 $q(k)=O(\log\lceil\frac{k\log\log n}{\log n}\rceil)$。我们的 PRDO 结果基于近似距离维护器的新型构造,我们在本文中设计了这些维护器。具体地,我们证明了对于任何 $\epsilon>0$,任何 $k=1,2,...$ 和任何图 $G$ 和 $p$ 个结点对的集合 $\mathcal{P}$,存在一个 $(1+\epsilon)$-近似维护器,其具有 $O(\gamma(\epsilon,k)\cdot p+n\log k+n^{1+\frac{1}{k}})$ 条边,其中 $\gamma(\epsilon,k)=(\frac{\log k}{\epsilon})^{O(\log k)}$。这些新型维护器比由Kogan和Parter提出的先前最先进的近似维护器要稀疏得多。