This paper investigates a learning solution for robust beamforming optimization in downlink multi-user systems. A base station (BS) identifies efficient multi-antenna transmission strategies only with imperfect channel state information (CSI) and its stochastic features. To this end, we propose a robust training algorithm where a deep neural network (DNN), which only accepts estimates and statistical knowledge of the perfect CSI, is optimized to fit to real-world propagation environment. Consequently, the trained DNN can provide efficient robust beamforming solutions based only on imperfect observations of the actual CSI. Numerical results validate the advantages of the proposed learning approach compared to conventional schemes.
翻译:本文探讨了在多用户下行链路系统中实现稳健的波束优化的学习解决方案。一个基地站(BS)只用不完善的频道状态信息(CSI)及其随机特征来确定高效的多线传输战略。为此,我们提出一个强健的培训算法,即深神经网络(DNN)只接受完美的CSI的估计和统计知识,能优化适应现实世界的传播环境。因此,训练有素的DNN只能根据对实际的CSI的不完善观察,才能提供高效的稳健的波束配置解决方案。数字结果验证了拟议学习方法与常规计划相比的优势。