The recently emerged symbol-level precoding (SLP) technique has been regarded as a promising solution in multi-user wireless communication systems, since it can convert harmful multi-user interference (MUI) into beneficial signals for enhancing system performance. However, the tremendous computational complexity of conventional symbol-level precoding designs severely hinders the practical implementations. In order to tackle this difficulty, we propose a novel deep learning (DL) based approach to efficiently design the symbol-level precoders. Particularly, in this correspondence, we consider a multi-user multi-input single-output (MU-MISO) downlink system. An efficient precoding neural network (EPNN) is introduced to optimize the symbol-level precoders for maximizing the minimum quality-of-service (QoS) of all users under the power constraint. Simulation results demonstrate that the proposed EPNN based SLP design can dramatically reduce the computing time at the price of slight performance loss compared with the conventional convex optimization based SLP design.


翻译:最近出现的符号级预编码技术(SLP)被认为是多用户无线通信系统的一个大有希望的解决办法,因为它可以将有害的多用户干扰(MUI)转换为有利于提高系统性能的信号;然而,常规符号级预编码设计在计算上极为复杂,严重妨碍了实际实施。为了解决这一困难,我们提议了一种基于新颖的深层次学习(DL)方法,以便有效地设计符号级预编码器。特别是在本函中,我们认为多用户多用户多投入单输出下链接系统(MU-MISO)是一个很有希望的解决方案。一个高效的预编码神经网络(EPNN)被引入来优化符号级预编码器,以便在电力限制下最大限度地提高所有用户的最低服务质量。模拟结果表明,基于 EPNNN的SLP设计可以大大缩短以轻微性能损失的价格计算的计算时间,而与基于常规 convex优化的 SLP设计相比。

0
下载
关闭预览

相关内容

CC在计算复杂性方面表现突出。它的学科处于数学与计算机理论科学的交叉点,具有清晰的数学轮廓和严格的数学格式。官网链接:https://link.springer.com/journal/37
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
45+阅读 · 2020年10月31日
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
87+阅读 · 2020年5月11日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Deep Learning(深度学习)各种资料网址
数据挖掘入门与实战
11+阅读 · 2017年10月31日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
Deep Learning for Energy Markets
Arxiv
10+阅读 · 2019年4月10日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Deep Learning(深度学习)各种资料网址
数据挖掘入门与实战
11+阅读 · 2017年10月31日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员