Waveform-relaxation methods divide systems of differential equations into subsystems and therefore allow for parallelization across the system. Here we present an application for ODE waveform-relaxation methods in the context of spiking neural network simulators. Parallel spiking neural network simulators make use of the fact that the dynamics of neurons with chemical synapses is decoupled for the duration of the minimal network delay and thus can be solved independently for this duration. The inclusion of electrical synapses, so-called gap junctions, requires continuous interaction between neurons and therefore constitutes a conceptional problem for those simulators. We present a suitable waveform-relaxation method for an efficient integration of gap junctions and demonstrate that the use of the waveform-relaxation method improves both, accuracy and performance, compared to a non-iterative solution of the problem. We investigate the employed method in a reference implementation in the parallel spiking neural network simulator NEST.
翻译:波形松绑方法将不同方程式的系统分为子系统,从而允许整个系统平行化。 我们在这里介绍了在神经网络模拟器中应用 ODE 波形松绑方法的应用程序。 平行喷射神经网络模拟器使用一个事实,即在最小网络延迟期间,带有化学突触的神经元的动态会分解,从而可以在这一时期内独立解决。 包括电突触,即所谓的空隙连接,需要神经元之间持续互动,从而构成这些模拟器的受孕问题。 我们提出了一个适当的波形松绑绑方法,以有效整合隔热点,并表明使用波形松绑绑方法可以改善平衡、准确和性能,而不是解决问题的不显眼性。 我们在平行的神经网络模拟器 NEST的参考实施中,对所使用的方法进行了调查。