Cyberattacks are a major issues and it causes organizations great financial, and reputation harm. However, due to various factors, the current network intrusion detection systems (NIDS) seem to be insufficent. Predominant NIDS identifies Cyberattacks through a handcrafted dataset of rules. Although the recent applications of machine learning and deep learning have alleviated the enormous effort in NIDS, the security of network data has always been a prime concern. However, to encounter the security problem and enable sharing among organizations, Federated Learning (FL) scheme is employed. Although the current FL systems have been successful, a network's data distribution does not always fit into a single global model as in FL. Thus, in such cases, having a single global model in FL is no feasible. In this paper, we propose a Segmented-Federated Learning (Segmented-FL) learning scheme for a more efficient NIDS. The Segmented-FL approach employs periodic local model evaluation based on which the segmentation occurs. We aim to bring similar network environments to the same group. Further, the Segmented-FL system is coupled with a weighted aggregation of local model parameters based on the number of data samples a worker possesses to further augment the performance. The improved performance by our system as compared to the FL and centralized systems on standard dataset further validates our system and makes a strong case for extending our technique across various tasks. The solution finds its application in organizations that want to collaboratively learn on diverse network environments and protect the privacy of individual datasets.


翻译:网络攻击是一个重大问题,它给各组织造成了巨大的财务和声誉伤害。然而,由于各种因素,目前的网络入侵探测系统似乎不尽人意。主要的国家基础设施开发系统通过手工制作的规则数据集识别了网络攻击。虽然最近应用机器学习和深层次学习的做法减轻了国家基础设施系统的巨大努力,但网络数据的安全始终是一个主要关注事项。然而,为了应对安全问题并使各组织之间能够共享,采用了联邦学习联合会(FL)计划。尽管目前的FL系统很成功,但网络中的数据分配并不总是适合像FL那样的单一全球模型。因此,在这种情况下,在FL中采用单一的全球模型是行不通的。在本文件中,我们提议采用分层学习和深层次学习计划(Seted-FL)学习计划,以提高效率NIDS。采用分解法的定期地方模型评估方法是为了将相似的网络环境带到同一组。此外,分解式的网络数据分配系统并不总是适合像FL那样的单一的全球模型。在这种情况下,将单个系统的数据配以加权的网络应用方法来更新我们的系统。比较系统的数据,以便更精确地核对我们的系统根据我们的标准系统来检索。

1
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Arxiv
10+阅读 · 2021年3月30日
Asymmetrical Vertical Federated Learning
Arxiv
3+阅读 · 2020年6月11日
Arxiv
20+阅读 · 2020年6月8日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Top
微信扫码咨询专知VIP会员