Aspect Sentiment Triplet Extraction (ASTE) is the most recent subtask of ABSA which outputs triplets of an aspect target, its associated sentiment, and the corresponding opinion term. Recent models perform the triplet extraction in an end-to-end manner but heavily rely on the interactions between each target word and opinion word. Thereby, they cannot perform well on targets and opinions which contain multiple words. Our proposed span-level approach explicitly considers the interaction between the whole spans of targets and opinions when predicting their sentiment relation. Thus, it can make predictions with the semantics of whole spans, ensuring better sentiment consistency. To ease the high computational cost caused by span enumeration, we propose a dual-channel span pruning strategy by incorporating supervision from the Aspect Term Extraction (ATE) and Opinion Term Extraction (OTE) tasks. This strategy not only improves computational efficiency but also distinguishes the opinion and target spans more properly. Our framework simultaneously achieves strong performance for the ASTE as well as ATE and OTE tasks. In particular, our analysis shows that our span-level approach achieves more significant improvements over the baselines on triplets with multi-word targets or opinions.


翻译:视觉感应三强( ASTE) 是ABSA 最新的一个子任务, 它输出一个方面目标的三重、 其相关情绪和相应的意见术语。 最近的一些模型以端对端的方式执行三重提取, 但严重依赖每个目标词和观点词之间的互动。 因此, 它们无法在包含多个字的目标和观点上很好地发挥作用。 我们提议的跨层次方法在预测其情绪关系时明确考虑到目标和观点的整个范围之间的相互作用。 因此, 它可以用整个范围的语义作出预测, 确保更好的情绪一致性。 为了减轻抽查造成的高计算成本, 我们提出双轨跨战略, 包括从Aspect Texton( ATE) 和 Vision Teralterm( OTE) 任务中进行监管。 这个战略不仅提高了计算效率, 也更恰当地区分了观点和目标的跨度。 我们的框架同时实现了ASTE 以及 ATE 和 OTE 任务的强性业绩。 特别是, 我们的分析显示, 我们的跨渠道或三重目标在多级基准上实现了更重大的改进。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
91+阅读 · 2020年7月4日
Aspect-Opinion对抽取
深度学习自然语言处理
9+阅读 · 2020年8月15日
细粒度情感分析任务(ABSA)的最新进展
PaperWeekly
18+阅读 · 2020年1月3日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
自然语言处理顶会EMNLP2018接受论文列表!
专知
87+阅读 · 2018年8月26日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
31+阅读 · 2020年9月21日
Arxiv
3+阅读 · 2019年3月1日
VIP会员
相关VIP内容
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
91+阅读 · 2020年7月4日
相关资讯
Aspect-Opinion对抽取
深度学习自然语言处理
9+阅读 · 2020年8月15日
细粒度情感分析任务(ABSA)的最新进展
PaperWeekly
18+阅读 · 2020年1月3日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
自然语言处理顶会EMNLP2018接受论文列表!
专知
87+阅读 · 2018年8月26日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员