Lebesgue integration of derivatives of strongly-oscillatory functions is a recurring challenge in computational science and engineering. Integration by parts is an effective remedy for huge computational costs associated with Monte Carlo integration schemes. In case of Lebesgue integrals over a smooth manifold, however, integration by parts gives rise to a derivative of the density implied by charts describing the domain manifold. This paper focuses on the computation of that derivative, which we call the density gradient function, on general smooth manifolds. We analytically derive formulas for the density gradient and present examples of manifolds determined by popular differential equation-driven systems. We highlight the significance of the density gradient by demonstrating a numerical example of Monte Carlo integration involving oscillatory integrands.


翻译:在计算学和工程学中,重力流函数衍生物的整合是一个反复出现的挑战。按部分整合是弥补与蒙特卡洛一体化计划相关的巨大计算成本的有效办法。但是,在利贝斯格综合体在光滑的方块上,按部分整合会产生描述域数的图表所隐含的密度衍生物的衍生物。本文侧重于该衍生物的计算,我们称之为密度梯度函数,以一般光滑的方块为主。我们分析得出密度梯度公式,并举例说明由流行差异方程式驱动的系统决定的多个元件。我们通过展示一个涉及浮质的蒙特卡洛综合体的数字示例,突出密度梯度的重要性。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
【CVPR2021】动态度量学习
专知会员服务
39+阅读 · 2021年3月30日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
14+阅读 · 2021年3月10日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
8+阅读 · 2018年6月19日
Arxiv
6+阅读 · 2018年3月29日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员