This work studies a real-time environment monitoring scenario in the industrial Internet of things, where wireless sensors proactively collect environmental data and transmit it to the controller. We adopt the notion of risk-sensitivity in financial mathematics as the objective to jointly minimize the mean, variance, and other higher-order statistics of the network energy consumption subject to the constraints on the age of information (AoI) threshold violation probability and the AoI exceedances over a pre-defined threshold. We characterize the extreme AoI staleness using results in extreme value theory and propose a distributed power allocation approach by weaving in together principles of Lyapunov optimization and federated learning (FL). Simulation results demonstrate that the proposed FL-based distributed solution is on par with the centralized baseline while consuming 28.50% less system energy and outperforms the other baselines.
翻译:这项工作在工业互联网上对事物进行实时环境监测,无线传感器积极主动地收集环境数据并将其传送给控制者。我们采用金融数学风险敏感性的概念,目标是在信息年龄(AoI)临界违反概率和AoI超出预定阈值的限制下,共同尽量减少网络能源消耗的平均值、差异和其他较高层次的统计数据。我们用极端价值理论的结果来描述极端的AoI陈旧性,并提议一种分配权力分配办法,方法是将Lyapunov优化和联合学习(FLF)的原则结合起来。模拟结果显示,拟议的FL分配解决方案与集中基线相同,同时消耗28.50%的系统能源,超出其他基线。