Normalizing flows are a promising tool for modeling probability distributions in physical systems. While state-of-the-art flows accurately approximate distributions and energies, applications in physics additionally require smooth energies to compute forces and higher-order derivatives. Furthermore, such densities are often defined on non-trivial topologies. A recent example are Boltzmann Generators for generating 3D-structures of peptides and small proteins. These generative models leverage the space of internal coordinates (dihedrals, angles, and bonds), which is a product of hypertori and compact intervals. In this work, we introduce a class of smooth mixture transformations working on both compact intervals and hypertori. Mixture transformations employ root-finding methods to invert them in practice, which has so far prevented bi-directional flow training. To this end, we show that parameter gradients and forces of such inverses can be computed from forward evaluations via the inverse function theorem. We demonstrate two advantages of such smooth flows: they allow training by force matching to simulation data and can be used as potentials in molecular dynamics simulations.
翻译:普通化流是模拟物理系统中概率分布的一个很有希望的工具。 虽然最先进的流准确估计分布和能量, 物理应用还要求平滑的能量来计算力和高阶衍生物。 此外, 这种密度常常在非三极地表上定义。 最近的一个例子是波尔茨曼生成的3D结构的Peptides和小蛋白。 这些基因模型可以利用内部坐标空间( dihradral、 角度和债券), 这是超高频和紧凑间隔的产物。 在这项工作中, 我们引入了一类光滑的混合物转换, 既可以使用紧凑的间隔, 也可以使用超紧凑的。 混凝土转换采用根调查方法在实际中将其倒转, 从而远无法进行双向流培训。 我们为此表明, 参数梯度和这种反面的力量可以通过反向函数的远端评估来计算。 我们展示了这种平稳流的两种优点: 它们能进行与模拟数据匹配的武力训练, 并且可以用作分子动态模拟的潜力 。