This study investigates crash severity risk modeling strategies for work zones involving large vehicles (i.e., trucks, buses, and vans) under crash data imbalance between low-severity (LS) and high-severity (HS) crashes. We utilized crash data involving large vehicles in South Carolina work zones from 2014 to 2018, which included four times more LS crashes than HS crashes. The objective of this study is to evaluate the crash severity prediction performance of various statistical, machine learning, and deep learning models under different feature selection and data balancing techniques. Findings highlight a disparity in LS and HS predictions, with lower accuracy for HS crashes due to class imbalance and feature overlap. Discriminative Mutual Information (DMI) yields the most effective feature set for predicting HS crashes without requiring data balancing, particularly when paired with gradient boosting models and deep neural networks such as CatBoost, NeuralNetTorch, XGBoost, and LightGBM. Data balancing techniques such as NearMiss-1 maximize HS recall when combined with DMI-selected features and certain models such as LightGBM, making them well-suited for HS crash prediction. Conversely, RandomUnderSampler, HS Class Weighting, and RandomOverSampler achieve more balanced performance, which is defined as an equitable trade-off between LS and HS metrics, especially when applied to NeuralNetTorch, NeuralNetFastAI, CatBoost, LightGBM, and Bayesian Mixed Logit (BML) using merged feature sets or models without feature selection. The insights from this study offer safety analysts guidance on selecting models, feature selection, and data balancing techniques aligned with specific safety goals, providing a robust foundation for enhancing work-zone crash severity prediction.
翻译:暂无翻译