The simulation of chemical kinetics involving multiple scales constitutes a modeling challenge (from ordinary differential equations to Markov chain) and a computational challenge (multiple scales, large dynamical systems, time step restrictions). In this paper we propose a new discrete stochastic simulation algorithm: the postprocessed second kind stabilized orthogonal $\tau$-leap Runge-Kutta method (PSK-$\tau$-ROCK). In the context of chemical kinetics this method can be seen as a stabilization of Gillespie's explicit $\tau$-leap combined with a postprocessor. The stabilized procedure allows to simulate problems with multiple scales (stiff), while the postprocessing procedure allows to approximate the invariant measure (e.g. mean and variance) of ergodic stochastic dynamical systems. We prove stability and accuracy of the PSK-$\tau$-ROCK. Numerical experiments illustrate the high reliability and efficiency of the scheme when compared to other $\tau$-leap methods.
翻译:模拟涉及多个尺度的化学动能学是一个模型化挑战(从普通差异方程式到Markov链)和计算挑战(多尺度、大型动态系统、时间步骤限制)。在本文件中,我们提出一个新的离散随机模拟算法:后处理的二类稳定或单体美元或单体龙格-库塔法(PSK-$\tau$-leap Runge-Kutta法);在化学动能学方面,这种方法可被视为Gillespie的显性美元值和后处理器的稳定性。稳定程序允许模拟多尺度(stiff)的问题,而后处理程序则允许近似ERGOdic软体动力学系统(例如平均值和差异)。我们证明了PSK-$\tau$-Rock的稳定性和准确性。Numerical实验表明,与其他$/tau-leap方法相比,该计划的可靠性和效率很高。