The simulation of chemical kinetics involving multiple scales constitutes a modeling challenge (from ordinary differential equations to Markov chain) and a computational challenge (multiple scales, large dynamical systems, time step restrictions). In this paper we propose a new discrete stochastic simulation algorithm: the postprocessed second kind stabilized orthogonal $\tau$-leap Runge-Kutta method (PSK-$\tau$-ROCK). In the context of chemical kinetics this method can be seen as a stabilization of Gillespie's explicit $\tau$-leap combined with a postprocessor. The stabilized procedure allows to simulate problems with multiple scales (stiff), while the postprocessing procedure allows to approximate the invariant measure (e.g. mean and variance) of ergodic stochastic dynamical systems. We prove stability and accuracy of the PSK-$\tau$-ROCK. Numerical experiments illustrate the high reliability and efficiency of the scheme when compared to other $\tau$-leap methods.


翻译:模拟涉及多个尺度的化学动能学是一个模型化挑战(从普通差异方程式到Markov链)和计算挑战(多尺度、大型动态系统、时间步骤限制)。在本文件中,我们提出一个新的离散随机模拟算法:后处理的二类稳定或单体美元或单体龙格-库塔法(PSK-$\tau$-leap Runge-Kutta法);在化学动能学方面,这种方法可被视为Gillespie的显性美元值和后处理器的稳定性。稳定程序允许模拟多尺度(stiff)的问题,而后处理程序则允许近似ERGOdic软体动力学系统(例如平均值和差异)。我们证明了PSK-$\tau$-Rock的稳定性和准确性。Numerical实验表明,与其他$/tau-leap方法相比,该计划的可靠性和效率很高。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员