Quantum computing is a promising technology that harnesses the peculiarities of quantum mechanics to deliver computational speedups for some problems that are intractable to solve on a classical computer. Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in terms of chip size and error rates. Shallow quantum circuits with uncomplicated topologies are essential for successful applications in the NISQ era. Based on matrix analysis, we derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions. The depth of the compressed circuits is independent of simulation time and grows linearly with the number of spins. The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $\mathcal{O}(10^3)$ spins. The resulting quantum circuits have a simple nearest-neighbor topology, which makes them ideally suited for NISQ devices.
翻译:量子计算是一种很有希望的技术,它利用量子力学的特殊性,为古典计算机难以解决的问题提供计算加速。目前一代吵闹的中间量衡(NISQ)计算机在芯片大小和误差率方面受到严重限制。浅量子电路具有不复杂的地形,对于在新谢克时代的成功应用至关重要。根据矩阵分析,我们从局部电路转换到高效压缩量子电路,以模拟被称为自由发酵的某些旋转的汉密尔密尔顿人。压缩电路的深度独立于模拟时间,并随着旋转数的成线增长。拟议的数字电路压缩算法在除$\mathcal{O}(10 ⁇ 3美元)外能够进行电路合成的旋转数中,在后向稳定且以直线为尺度。由此产生的量子电路具有简单的近邻地形学,因此适合新谢克装置。