We examine a variety of numerical methods that arise when considering dynamical systems in the context of physics-based simulations of deformable objects. Such problems arise in various applications, including animation, robotics, control and fabrication. The goals and merits of suitable numerical algorithms for these applications are different from those of typical numerical analysis research in dynamical systems. Here the mathematical model is not fixed a priori but must be adjusted as necessary to capture the desired behaviour, with an emphasis on effectively producing lively animations of objects with complex geometries. Results are often judged by how realistic they appear to observers (by the "eye-norm") as well as by the efficacy of the numerical procedures employed. And yet, we show that with an adjusted view numerical analysis and applied mathematics can contribute significantly to the development of appropriate methods and their analysis in a variety of areas including finite element methods, stiff and highly oscillatory ODEs, model reduction, and constrained optimization.


翻译:我们从物理模拟变形物体的角度来考虑动态系统时产生的各种数字方法,这些问题出现在各种应用中,包括动画、机器人、控制和制造。这些应用的适当数字算法的目标和优点不同于动态系统中典型的数字分析研究的目标和优点。在这里,数学模型不是先验的,而是必须作必要的调整,以捕捉所期望的行为,重点是有效制作具有复杂地貌的物体的活动动画。结果往往根据观察者(通过“眼-心”)所认为的现实程度以及所用数字程序的功效来判断。然而,我们表明,经过调整的数值分析和应用数学可以极大地促进在各个领域开发适当的方法及其分析,包括有限的元素方法、硬性和高度的混凝度极分解码、模型减少和限制的优化。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Arxiv
0+阅读 · 2021年10月13日
Arxiv
0+阅读 · 2021年10月8日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Top
微信扫码咨询专知VIP会员