We analyze the mixing time of Metropolized Hamiltonian Monte Carlo (HMC) with the leapfrog integrator to sample from a distribution on $\mathbb{R}^d$ whose log-density is smooth, has Lipschitz Hessian in Frobenius norm and satisfies isoperimetry. We bound the gradient complexity to reach $\epsilon$ error in total variation distance from a warm start by $\tilde O(d^{1/4}\text{polylog}(1/\epsilon))$ and demonstrate the benefit of choosing the number of leapfrog steps to be larger than 1. To surpass previous analysis on Metropolis-adjusted Langevin algorithm (MALA) that has $\tilde{O}(d^{1/2}\text{polylog}(1/\epsilon))$ dimension dependency in Wu et al. (2022), we reveal a key feature in our proof that the joint distribution of the location and velocity variables of the discretization of the continuous HMC dynamics stays approximately invariant. This key feature, when shown via induction over the number of leapfrog steps, enables us to obtain estimates on moments of various quantities that appear in the acceptance rate control of Metropolized HMC. Moreover, to deal with another bottleneck on the HMC proposal distribution overlap control in the literature, we provide a new approach to upper bound the Kullback-Leibler divergence between push-forwards of the Gaussian distribution through HMC dynamics initialized at two different points. Notably, our analysis does not require log-concavity or independence of the marginals, and only relies on an isoperimetric inequality. To illustrate the applicability of our result, several examples of natural functions that fall into our framework are discussed.


翻译:本文分析了使用leapfrog积分器的Metropolized Hamiltonian Monte Carlo(HMC)混合时间,以从$\mathbb{R}^d$上的分布中采样,其对数密度是平滑且在Frobenius范数下具有Lipschitz Hessian以及满足等周性。我们通过$\tilde O(d^{1/4}\text{polylog}(1/\epsilon))$梯度复杂度来限制从热启动开始,达到总变化距离的$\epsilon$误差所需的步数,并展示了选择的跃点步数大于1的好处。为了超越Wu et al. (2022)中Metropolis-adjusted Langevin algorithm (MALA)的$\tilde{O}(d^{1/2}\text{polylog}(1/\epsilon))$维度相关性,我们揭示了证明中的关键特征:连续HMC动态的位置和速度变量的联合分布保持近似不变。当通过跃点步数对归纳进行展示时,这个关键特征使我们能够获得各种出现在Metropolized HMC的接受率控制中的量的矩的估计。此外,为了处理文献中HMC提议分布重叠控制的另一个瓶颈,我们提供了一种新方法来上界计算以两个不同点为初始点HMC动态的高斯分布的推前Kullback-Leibler散度。值得注意的是,我们的分析不需要对数凹性或边际独立性,并且仅依赖于等周性不等式。为了说明我们的结果的适用性,讨论了几个自然函数的示例,这些自然函数符合我们的框架。

0
下载
关闭预览

相关内容

专知会员服务
14+阅读 · 2021年5月21日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
17种深度强化学习算法用Pytorch实现
新智元
30+阅读 · 2019年9月16日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月26日
Arxiv
0+阅读 · 2023年5月24日
Arxiv
0+阅读 · 2023年5月24日
VIP会员
相关资讯
17种深度强化学习算法用Pytorch实现
新智元
30+阅读 · 2019年9月16日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员