We introduce a numerically tractable formulation of Bayesian joint models for longitudinal and survival data. The longitudinal process is modelled using generalised linear mixed models, while the survival process is modelled using a parametric general hazard structure. The two processes are linked by sharing fixed and random effects, separating the effects that play a role at the time scale from those that affect the hazard scale. This strategy allows for the inclusion of non-linear and time-dependent effects while avoiding the need for numerical integration, which facilitates the implementation of the proposed joint model. We explore the use of flexible parametric distributions for modelling the baseline hazard function which can capture the basic shapes of interest in practice. We discuss prior elicitation based on the interpretation of the parameters. We present an extensive simulation study, where we analyse the inferential properties of the proposed models, and illustrate the trade-off between flexibility, sample size, and censoring. We also apply our proposal to two real data applications in order to demonstrate the adaptability of our formulation both in univariate time-to-event data and in a competing risks framework. The methodology is implemented in rstan.
翻译:我们采用了一种可量化的巴伊西亚纵向和生存数据联合模型。纵向过程采用一般线性混合模型进行模型化,而生存过程则使用参数性一般危险结构进行模型化。这两个过程通过分享固定和随机效应,将当时起作用的影响与影响危险规模的影响区分开来。这个战略允许纳入非线性和时间性影响,同时避免数字整合的需要,从而便利执行拟议的联合模型。我们探索使用灵活的参数分布法模拟基线危险功能,以便收集实践中感兴趣的基本形状。我们讨论根据对参数的解释事先引证的问题。我们提出一份广泛的模拟研究,分析拟议模型的推论性质,说明灵活性、样本大小和审查之间的权衡。我们还将我们的建议应用于两个真实的数据应用,以显示我们在非线性时间-时间-事件数据和相互竞争的风险框架中的编制方式的适应性。该方法在里斯坦实施。