Patient monitoring is vital in all stages of care. We here report the development and validation of ICU length of stay and mortality prediction models. The models will be used in an intelligent ICU patient monitoring module of an Intelligent Remote Patient Monitoring (IRPM) framework that monitors the health status of patients, and generates timely alerts, maneuver guidance, or reports when adverse medical conditions are predicted. We utilized the publicly available Medical Information Mart for Intensive Care (MIMIC) database to extract ICU stay data for adult patients to build two prediction models: one for mortality prediction and another for ICU length of stay. For the mortality model, we applied six commonly used machine learning (ML) binary classification algorithms for predicting the discharge status (survived or not). For the length of stay model, we applied the same six ML algorithms for binary classification using the median patient population ICU stay of 2.64 days. For the regression-based classification, we used two ML algorithms for predicting the number of days. We built two variations of each prediction model: one using 12 baseline demographic and vital sign features, and the other based on our proposed quantiles approach, in which we use 21 extra features engineered from the baseline vital sign features, including their modified means, standard deviations, and quantile percentages. We could perform predictive modeling with minimal features while maintaining reasonable performance using the quantiles approach. The best accuracy achieved in the mortality model was approximately 89% using the random forest algorithm. The highest accuracy achieved in the length of stay model, based on the population median ICU stay (2.64 days), was approximately 65% using the random forest algorithm.
翻译:病人监测在所有护理阶段都至关重要。 我们在此报告ICU停留时间和死亡率预测模型的开发和验证。 这些模型将用于智能的ICU病人监测模块,该模块将用于智能远程病人监测框架的智能ICU病人监测模块,该模块将监测病人的健康状况,并产生及时警报、操作指导或报告,以预测不利的医疗条件。我们利用公开的重症护理医疗信息数据库(MIMIMIC)数据库,为成年病人提取了ICU停留时间数据,以建立两个预测模型:一个用于死亡率预测,另一个用于ICU停留时间。对于死亡率模型,我们将使用六种常用的机器学习(ML)二进制分类算法,用于预测排放状况(生存与否)。对于停留模型的长度,我们使用同样的六 ML算法进行二进制分类,使用中位病人的ICU逗留2.64天。 对于基于回归法的两种ML算法模型来预测天数。 我们用12个基线人口和关键信号模型,另一个基于我们所拟议的精度精确度模型, 使用最精度模型,我们使用的是精度模型, 使用最精度模型,我们使用的是精度模型, 21 使用最精度模型,使用最精度精确的精确的精度方法。我们所使用的精度模型,使用最精度模型, 使用最精度模型,使用最精度模型,在SBMLILBBBMIBMLBBBBBB 使用最精度方法, 和最精度方法,使用最精度方法, 使用最精度方法,在SBLILILIBLI。在S。我们使用的精度的精确的精确的精确的精确的精确的精确的精确的精确的精确的精确的精确性方法,在S。我们使用的精确的精确的精确性模型,使用了21 。在S。我们使用的精度方法,在S。在SBBBBMLIBLIBRI。在SBMBMBBBSBSBS。我们使用的精度方法,在S。在SBSBSBSBSBSBSBSBSBSBSBS 使用最精确的精度方法,在SBSBSBSBS