Patients are often encouraged to make use of wearable devices for remote collection and monitoring of health data. This adoption of wearables results in a significant increase in the volume of data collected and transmitted. The battery life of the devices is then quickly diminished due to the high processing requirements of the devices. Given the importance attached to medical data, it is imperative that all transmitted data adhere to strict integrity and availability requirements. Reducing the volume of healthcare data for network transmission may improve sensor battery life without compromising accuracy. There is a trade-off between efficiency and accuracy which can be controlled by adjusting the sampling and transmission rates. This paper demonstrates that machine learning can be used to analyse complex health data metrics such as the accuracy and efficiency of data transmission to overcome the trade-off problem. The study uses time series nonlinear autoregressive neural network algorithms to enhance both data metrics by taking fewer samples to transmit. The algorithms were tested with a standard heart rate dataset to compare their accuracy and efficiency. The result showed that the Levenbery-Marquardt algorithm was the best performer with an efficiency of 3.33 and accuracy of 79.17%, which is similar to other algorithms accuracy but demonstrates improved efficiency. This proves that machine learning can improve without sacrificing a metric over the other compared to the existing methods with high efficiency.


翻译:经常鼓励病人使用可磨损设备远程收集和监测健康数据。采用可磨损设备后,收集和传输的数据数量大幅增加。然后,由于设备处理要求高,设备电池寿命迅速减少。鉴于医疗数据的重要性,所有传输的数据都必须严格遵守完整性和可用性要求。降低网络传输的保健数据量可以改善感官电池寿命,而不损害准确性。通过调整取样和传输率可以控制效率和准确性之间的权衡。本文表明,机器学习可用来分析复杂的健康数据衡量标准,如数据传输的准确性和效率,以克服交易问题。研究使用时间序列非线性自反神经网络算法,通过较少的样本来提高两种数据衡量标准。计算方法经过标准心率数据集测试,以比较其准确性和效率。结果显示,Levery-Marquardt算法是最佳的性,其效率为3.33%,准确性为79.17%,用以分析数据传输的准确性,以克服交易问题。这项研究使用非线性自反向式神经网络算法,以便通过较少的样本来改进两个数据衡量标准。该算法可以提高其他方法的精确性,但可以证明其他方法的精确性。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
145+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
100+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
22+阅读 · 2022年2月24日
Arxiv
16+阅读 · 2018年4月2日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员