This paper aims at jointly addressing two seemly conflicting issues in federated learning: differential privacy (DP) and Byzantine-robustness, which are particularly challenging when the distributed data are non-i.i.d. (independent and identically distributed). The standard DP mechanisms add noise to the transmitted messages, and entangles with robust stochastic gradient aggregation to defend against Byzantine attacks. In this paper, we decouple the two issues via robust stochastic model aggregation, in the sense that our proposed DP mechanisms and the defense against Byzantine attacks have separated influence on the learning performance. Leveraging robust stochastic model aggregation, at each iteration, each worker calculates the difference between the local model and the global one, followed by sending the element-wise signs to the master node, which enables robustness to Byzantine attacks. Further, we design two DP mechanisms to perturb the uploaded signs for the purpose of privacy preservation, and prove that they are $(\epsilon,0)$-DP by exploiting the properties of noise distributions. With the tools of Moreau envelop and proximal point projection, we establish the convergence of the proposed algorithm when the cost function is nonconvex. We analyze the trade-off between privacy preservation and learning performance, and show that the influence of our proposed DP mechanisms is decoupled with that of robust stochastic model aggregation. Numerical experiments demonstrate the effectiveness of the proposed algorithm.
翻译:本文旨在共同解决联谊学习中两个似乎相互矛盾的问题: 差异隐私(DP) 和 Byzantine- robustness, 当分发的数据为非i. i. d. (独立和相同分布) 时, 这些问题尤其具有挑战性。 标准 DP 机制在发送的信息中添加噪音, 并用强大的随机梯度梯度聚合纠缠在一起, 以抵御Byzantine攻击。 在本文件中, 我们通过强力的随机模型汇总, 将这两个问题分离出来, 也就是说, 我们提议的DP DP 机制与Byzantine 攻击 。 我们的拟议 CD 机制与 Byzantine 袭击 的匹配性能 。 通过利用噪音分配模型的特性, 将强力的模拟模型汇总起来, 每一个工人在每次循环中, 都计算本地模型与全球模型的区别, 然后向主节点发送元素信号信号, 保护 Byzantine 攻击 。 此外, 我们设计两个DP 机制来破坏上传信号,, 证明它们是$(\ sepslonalalalal) liver liveralevilviewsal) 和我们的拟议 的缩缩缩缩 。