In heterogeneous rank aggregation problems, users often exhibit various accuracy levels when comparing pairs of items. Thus a uniform querying strategy over users may not be optimal. To address this issue, we propose an elimination-based active sampling strategy, which estimates the ranking of items via noisy pairwise comparisons from users and improves the users' average accuracy by maintaining an active set of users. We prove that our algorithm can return the true ranking of items with high probability. We also provide a sample complexity bound for the proposed algorithm which is better than that of non-active strategies in the literature. Experiments are provided to show the empirical advantage of the proposed methods over the state-of-the-art baselines.
翻译:在各种分类汇总问题中,用户在比较对项目时往往表现出不同的准确度。因此,对用户的统一查询战略可能不是最佳的。为了解决这一问题,我们建议采用基于消除的主动抽样战略,通过对用户进行吵闹的对口比较来估计项目排名,并通过保持一套活跃的用户来提高用户的平均准确性。我们证明我们的算法可以极有可能地返回项目的真实排序。我们还为拟议的算法提供了样本复杂性,该算法比文献中的非活跃战略要好。我们提供了实验,以显示拟议方法相对于最新基线的经验优势。