Even in a carefully designed randomized trial, outcomes for some study participants can be missing, or more precisely, ill-defined, because participants had died prior to date of outcome collection. This problem, known as truncation by death, means that the treated and untreated are no longer balanced with respect to covariates determining survival. Therefore, researchers often utilize principal stratification and focus on the Survivor Average Causal Effect (SACE). The SACE is the average causal effect among the subpopulation that will survive regardless of treatment status. In this paper, we present matching-based methods for SACE identification and estimation. We provide an identification result for the SACE that motivates the use of matching to restore the balance among the survivors. We discuss various practical issues, including the choice of distance measures, possibility of matching with replacement, and post-matching crude and model-based SACE estimators. Simulation studies and data analysis demonstrate the flexibility of our approach. Because the cross-world assumptions needed for SACE identification can be too strong, we also present sensitivity analysis techniques and illustrate their use in real data analysis. Finally, we show how our approach can also be utilized to estimate conditional separable effects, a recently-proposed alternative for the SACE.
翻译:即使在精心设计的随机试验中,某些研究参与者的结果也可能丢失,或者更确切地说,定义不准确,因为参与者在结果收集日期之前死亡,因此有些研究参与者的结果可能丢失,或者更确切地说,定义不准确,因为参与者在结果收集日期之前就已经死亡。这个问题被称为死亡脱节,意味着治疗和未经治疗的问题在确定生存的共差方面不再平衡,因此,研究人员经常使用主要的分层,并把重点放在生存者平均原因估计(SACE)上。SACE是生存者的平均因果效应,而不论治疗状况如何。在这份文件中,我们提出了基于匹配的方法来鉴定和估计SACE。我们为SACE提供了一种鉴别结果,鼓励使用匹配来恢复幸存者之间的平衡。我们讨论了各种实际问题,包括选择距离措施、与替代相匹配的可能性、以及后混合的粗质和基于模型的SACE估计器。模拟研究和数据分析显示了我们的方法的灵活性。因为SACE识别所需的跨世界假设可能太强,我们也提出敏感性分析技术,并说明了它们在真实数据分析中的用途。最后,我们展示了我们的方法如何利用了可选择。