Monocular depth estimation has been widely studied, and significant improvements in performance have been recently reported. However, most previous works are evaluated on a few benchmark datasets, such as KITTI datasets, and none of the works provide an in-depth analysis of the generalization performance of monocular depth estimation. In this paper, we deeply investigate the various backbone networks (e.g.CNN and Transformer models) toward the generalization of monocular depth estimation. First, we evaluate state-of-the-art models on both in-distribution and out-of-distribution datasets, which have never been seen during network training. Then, we investigate the internal properties of the representations from the intermediate layers of CNN-/Transformer-based models using synthetic texture-shifted datasets. Through extensive experiments, we observe that the Transformers exhibit a strong shape-bias rather than CNNs, which have a strong texture-bias. We also discover that texture-biased models exhibit worse generalization performance for monocular depth estimation than shape-biased models. We demonstrate that similar aspects are observed in real-world driving datasets captured under diverse environments. Lastly, we conduct a dense ablation study with various backbone networks which are utilized in modern strategies. The experiments demonstrate that the intrinsic locality of the CNNs and the self-attention of the Transformers induce texture-bias and shape-bias, respectively.


翻译:对单体深度估计进行了广泛研究,最近报告了业绩方面的重大改进。然而,以前的大多数工作都是对一些基准数据集(如KITTI数据集)进行的,而以前的大部分工作都是对一些基准数据集(如KITTI数据集)的评价,没有一项工作对单体深度估计的一般性能进行深入分析。在本文中,我们深入地调查了各种主干网络(如CNN和变异模型),这些主干网络(如CNN和变异模型)一般化单体深度估计。首先,我们评估了分布和分配外数据集方面的最新模型,这些模型在网络培训期间从未见过。然后,我们调查了CNN/TREX基础模型中间层使用合成质变数据集对总体性表现的内在性质特性。我们通过广泛的实验发现,变异型网络的形状偏差强,而不是CNNIS,它们具有很强的纹理-偏差。我们还发现,在单体深度估计方面,相对偏差模型的通用性能比形状型模型要差。我们证明,在现实世界中观察到类似方面,光线/变型模型分别驱动着基础网络的深度研究,在多种环境下利用了正态的内基质试验。最后,在深度试验中,不断展示了各种基底环境下,正态网络。

0
下载
关闭预览

相关内容

ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月2日
Arxiv
0+阅读 · 2023年3月1日
Arxiv
64+阅读 · 2021年6月18日
VIP会员
相关VIP内容
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员