How to dynamically measure the local-to-global spatio-temporal coherence between demand and supply networks is a fundamental task for ride-sourcing platforms, such as DiDi. Such coherence measurement is critically important for the quantification of the market efficiency and the comparison of different platform policies, such as dispatching. The aim of this paper is to introduce a graph-based equilibrium metric (GEM) to quantify the distance between demand and supply networks based on a weighted graph structure. We formulate GEM as the optimal objective value of an unbalanced transport problem, which can be efficiently solved by optimizing an equivalent linear programming. We examine how the GEM can help solve three operational tasks of ride-sourcing platforms. The first one is that GEM achieves up to 70.6% reduction in root-mean-square error over the second-best distance measurement for the prediction accuracy. The second one is that the use of GEM for designing order dispatching policy increases answer rate and drivers' revenue for more than 1%, representing a huge improvement in number. The third one is that GEM is to serve as an endpoint for comparing different platform policies in AB test.


翻译:如何动态地测量供求网络与供应网络之间的局部到全球时空一致性,是Didi等搭载平台的一项基本任务。 这种一致性衡量对于量化市场效率和比较不同平台政策(例如发送)至关重要。 本文的目的是采用基于图表的均衡度度(GEM)来量化基于加权图表结构的供求网络与供应网络之间的距离。 我们将GEM作为不平衡运输问题的最佳目标值,通过优化等效线性编程可以有效解决。 我们研究GEM如何帮助解决搭载平台的三项操作性任务。 第一是GEM在预测准确性第二最佳距离测量上达到70.6%的根位差差差。 第二是使用GEM来设计发出订单的指令,提高政策答复率和驱动者收入超过1%,这代表数量上的巨大改善。 第三是GEM作为在AB测试中比较不同平台政策的终点。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
《自然》(20190829出版)一周论文导读
科学网
6+阅读 · 2019年8月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Graph Learning based Recommender Systems: A Review
Arxiv
2+阅读 · 2021年5月13日
Arxiv
3+阅读 · 2018年12月21日
Arxiv
3+阅读 · 2018年10月5日
VIP会员
相关资讯
《自然》(20190829出版)一周论文导读
科学网
6+阅读 · 2019年8月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员