There is great excitement about learned index structures, but understandable skepticism about the practicality of a new method uprooting decades of research on B-Trees. In this paper, we work to remove some of that uncertainty by demonstrating how a learned index can be integrated in a distributed, disk-based database system: Google's Bigtable. We detail several design decisions we made to integrate learned indexes in Bigtable. Our results show that integrating learned index significantly improves the end-to-end read latency and throughput for Bigtable.
翻译:人们对所学的指数结构非常兴奋,但人们却可以理解地怀疑将几十年的B-Trees研究消除掉的新方法的实用性。 在本文中,我们通过展示如何将所学的指数纳入分布式磁盘数据库系统(Google's Bigtable)来消除其中的一些不确定性:谷歌的大数据系统。我们详细介绍了我们为将已学的指数纳入大数据系统而做出的若干设计决定。我们的结果表明,所学指数的整合极大地改善了大数据的端到端读延时和吞吐量。