Capturing uncertainty in models of complex dynamical systems is crucial to designing safe controllers. Stochastic noise causes aleatoric uncertainty, whereas imprecise knowledge of model parameters leads to epistemic uncertainty. Several approaches use formal abstractions to synthesize policies that satisfy temporal specifications related to safety and reachability. However, the underlying models exclusively capture aleatoric but not epistemic uncertainty, and thus require that model parameters are known precisely. Our contribution to overcoming this restriction is a novel abstraction-based controller synthesis method for continuous-state models with stochastic noise and uncertain parameters. By sampling techniques and robust analysis, we capture both aleatoric and epistemic uncertainty, with a user-specified confidence level, in the transition probability intervals of a so-called interval Markov decision process (iMDP). We synthesize an optimal policy on this iMDP, which translates (with the specified confidence level) to a feedback controller for the continuous model with the same performance guarantees. Our experimental benchmarks confirm that accounting for epistemic uncertainty leads to controllers that are more robust against variations in parameter values.
翻译:获取复杂动态系统模型的不确定性是设计安全控制器的关键。 软体噪声造成显性不确定性,而模型参数的不精确知识则导致显性不确定性。 几种方法使用正式的抽象来综合符合安全和可达性时间规格的政策。 但是, 基础模型只捕捉显性不确定性, 而不是显性不确定性, 因而要求精确地了解模型参数。 我们对克服这一限制的贡献是, 对具有随机噪音和不确定参数的连续状态模型采用一种新的抽象化控制器合成方法。 通过取样技术和强力分析, 我们用用户指定的信任度水平, 捕捉出显性不确定性和感性不确定性。 我们将iMDP 的优化政策合成为连续模型的反馈控制器, 并使用同样的性能保证。 我们的实验基准确认, 认知性不确定性的计算导致控制器比参数变化更为稳健。